Fuzzy Prototypes: From a Cognitive View to a Machine Learning Principle

نویسندگان

  • Marie-Jeanne Lesot
  • Maria Rifqi
  • Bernadette Bouchon-Meunier
چکیده

Cognitive psychology works have shown that the cognitive representation of categories is based on a typicality notion: all objects of a category do not have the same representativeness, some are more characteristic or more typical than others, and better exemplify their category. Categories are then defined in terms of prototypes, i.e. in terms of their most typical elements. Furthermore, these works showed that an object is all the more typical of its category as it shares many features with the other members of the category and few features with the members of other categories. In this paper, we propose to profit from these principles in a machine learning framework: a formalization of the previous cognitive notions is presented, leading to a prototype building method that makes it possible to characterize data sets taking into account both common and discriminative features. Algorithms exploiting these prototypes to perform tasks such as classification or clustering are then presented. The formalization is based on the computation of typicality degrees that measure the representativeness of each data point. These typicality degrees are then exploited to define fuzzy prototypes: in adequacy with human-like description of categories, we consider a prototype as an intrinsically imprecise notion. The fuzzy logic framework makes it possible to model sets with unsharp boundaries or vague and approximate concepts, and appears most appropriate to model prototypes. We then exploit the computed typicality degrees and the built fuzzy prototypes to perform machine learning tasks such as classification and clustering. We present several algorithms, justifying in each case the chosen parameters. We illustrate the results obtained on several data sets corresponding both to crisp and fuzzy data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Weighted Prototypes using Genetic Algorithms

Smith and Osherson proposed the prototype view for concept representation and category cls, Hiflcafion. In the prototype view, concepts are represented as prototypes. A prototype is a collection of salient properties of a conceptUnder the prototype view, a~ instance is classified as a memberofa concept ifit is sufficiently similar to the prototype of this concept. Although the prototype view ha...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

A prototype classification method and its use in a hybrid solution for multiclass pattern recognition

In order to combine a fast multiclass classification method with an effective binary classification method, we have developed a prototype learning/matching scheme that can be integrated with support vector machines (SVM) for vector-matching applications. This prototype classification method employs a learning process to determine both the number and the location of prototypes. The learning proc...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links

Fuzzy Cognitive Maps (FCMs) constitute an attractive knowledge-based methodology, combining the robust properties of fuzzy logic and neural networks. FCMs represent causal knowledge as a signed directed graph with feedback and provide an intuitive framework which incorporates the experts’ knowledge. FCMs handle available information and knowledge from an abstract point of view. They develop beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008